Microprocessor and Embedded Systems

- 1.1 Course Number: ECE321
- 1.2 Contact Hours: 3-0-0 Credits: 9
- 1.3 Semester-offered: 4th Year-Odd Semester
- 1.4 Prerequisite: Basic knowledge of digital electronics and computer architecture is required.
- 1.5 Syllabus Committee Member: Dr. Umakant Dhar Dwivedi, Dr. Abhishek Kumar Singh, Dr. Sajal Agarwal, Dr. Vijay Kumar Singh, Dr. Ankur Pandey.

2. **Objective:**

- Apply the fundamentals of assembly level programming of 8085 microprocessor and 8051 microcontroller.
- Work with standard microprocessor real time interfaces
- Develop skill for writing C programs for 8051 microcontroller.
- Design microprocessors/microcontrollers-based systems.

3. Course Content:

Unit-wise distribution of content and number of lectures

Unit	Topics	Sub-topic	Lectures
1	Introduction to Microprocessor	Internal architecture of 8085 microprocessor –Instruction set - Addressing modes – Classification of instructions. Assembly language programming –standard programs in assembly, Stack and Subroutines – CALL and RETURN instructions – Delay subroutines. Timing and control – Machine cycles, instruction cycle and T states – fetch and execute cycles – Timing diagram for instructions.	14
2	Interfacing of Microprocessor with I/O Devices	IO and memory interfacing – Address decoding– interrupt structure of 8085. I/O ports- Programmable peripheral interface PPI 8255 - Modes of operation. Interfacing of LEDs, ADC and DAC with 8085.	8

3	Introduction to Microcontroller	Introduction to Embedded Systems-Application domain of embedded systems, features and characteristics, System model, 8051- Microcontrollers Hardware: Microcontroller Architecture: IO Port structure, register organization, general purpose RAM, Introduction to microcontrollers, overview of architecture of a typical microcontroller such as AVR microcontroller, addressing, assembly language programming.	10
4	Application and Interfacing with Microcontroller	Interfacing with LEDs, Seven Segment, Sensors, Basic concepts of LCD, ADC, DAC, Relays etc. and their interfacing to microcontroller.	8
		Total	40

4. **Readings**

4.1 Textbook:

1. Mohamed Ali Mazidi, Janice Gillispie Mazidi," The 8051 microcontroller and embedded systems using Assembly and C", second edition, Pearson education /Prentice hall of India.

2. Ramesh Gaonkar, Microprocessor, Architecture, Programming and Applications, Penram International Publishing; Sixth edition, 2014.

3. Mathur A., Introduction to Microprocessors, Tata McGraw Hill, New Delhi, 1992. Douglas V. Hall, Microprocessors and Interfacing, Tata McGraw Hill, Education, New Delhi, Third Edition.

4.2 Reference Books

1. Scott MacKenzie, Raphael C W Phan, "The 8051 Microcontroller", Fourth Edition, Pearson education.

Outcome of the Course: At the end of the course the student should be able to: recall and apply a basic concept of digital fundamentals to Microprocessor based personal computer system. Identify a detailed s/w & h/w structure of the Microprocessor. Illustrate how the different peripherals (8255, 8253 etc.) are interfaced with Microprocessor. Distinguish and analyze the properties of Microprocessors. Analyze the data transfer information through serial & parallel ports.